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Abstract
Using the nonlinear coherent states method, a formalism for the construction
of the coherent states associated with ‘inverse bosonic operators’ and their
dual family has been proposed. Generalizing the approach, the ‘inverse
of f -deformed ladder operators’ corresponding to the nonlinear coherent
states in the context of quantum optics and the associated coherent states
have been introduced. Finally, after applying the proposal to a few known
physical systems, particular nonclassical features as sub-Poissonian statistics
and the squeezing of the quadratures of the radiation field corresponding to the
introduced states have been investigated.

PACS number: 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The standard coherent states |z〉 may be obtained from the action of a displacement operator
on the vacuum [1],

D(z) = exp(za† − z∗a), D(z)|0〉 = |z〉, (1)

or the right eigenstate annihilation operator

a|z〉 = z|z〉, (2)

where z ∈ C and a, a† are the standard bosonic annihilation, creation operators, respectively.
The states |z〉 are also minimum uncertainty states. It is well known that the expansion of
these states in the Fock space is as follows:

|z〉 = exp− 1
2 |z|2

∞∑
n=0

zn

√
n!

|n〉, (3)
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where the set {|n〉}∞n=0 is the number states of the quantized harmonic oscillator with
Hamiltonian Ĥ = a†a + 1

2 .
Due to the fact that the bosonic annihilation and creation operators, a and a† are singular

operators, the inverse operators a−1 and a†−1
are not well defined. Nevertheless, the following

generalized operators may be found in literature through the actions [2, 3]:

a†−1|n〉 = (1 − δn,0)
1√
n
|n − 1〉, (4)

and

a−1|n〉 = 1√
n + 1

|n + 1〉, (5)

where δn,0 is 1 when n = 0, otherwise it is 0 (so by definition a†−1|0〉 = 0). Obviously,
a−1

(
a†−1)

behaves like a creation (annihilation) operator. Also, the statement that a−1
(
a†−1)

is the right (left) inverse of a (a†) seems to be legally true, since

aa−1 = a†−1
a† = Î ,

a−1a = a†a†−1 = Î − |0〉〈0|,
(6)

where Î is the unit operator. Thus one may get the commutation relations [a, a−1] = |0〉〈0| =[
a†−1

, a†]. Anyway, the usefulness of these inverse operators in various contexts can be found
in previous publications we shall address at this point. Indeed, the operators in (4) and (5)
have been studied in para-Bose particles. In addition, these operators enable one to find the
eigenvalue equation for the squeezed coherent states. The vacuum and the first exited squeezed
states are the eigenstates of a†−1

a and aa†−1
, respectively [4]. Therefore, for instance, since

the squeezed vacuum states can be generated through some nonlinear optical processes, it is
remarkable that inverse bosonic operators may play an important role in studying the time
evolution of some nonlinear systems. Also, the important role of these operators has been
followed in the metaplectic group structure of the Mp(2) group, which is a two-fold cover
of Sp(2, R) and SU(1, 1) groups [5]. Let us recall that ‘photon added coherent states’ first
introduced by Agarwal and Tara [6] are closely related to the inverse bosonic operators [3],
where it has been shown that these states denoted by |z,m〉 = a†m|z〉 are eigenstates of the
operator a − ma†−1

with eigenvalues z. Subsequently, ‘photon subtracted coherent states’
can be obtained by m-times actions of a−1 on |z〉, followed by m-times actions of a†−1

on the
resultant states, i.e. |z,−m〉 = a†−m

a−m|z〉.
Nowadays generalization of coherent states besides their experimental generations have

made much interest in quantum physics, especially in quantum optics [1]. These quantum
states exhibit some interesting ‘non-classical properties’ particularly squeezing, antibunching,
sub-Poissonian statistics and oscillatory number distribution. Along achieving this goal, the
first purpose of the present paper is to outline a formalism for the construction of coherent
states associated with the ‘inverse bosonic operators’, the states that have not been found in
the literature up to know. But before paying attention to this matter, a question may naturally
arise about the relation between the operators a†−1

and a−1 and the standard coherent states
|z〉. Due to the second equation in (6) it is readily found that the following does not hold:
a−1|z〉 = z−1|z〉, which at first glance may be expected from equation (2). Instead, one has

a−1|z〉 = z−1[|z〉 − e− 1
2 |z|2 |0〉]. (7)

This is consistent with the fact that the right eigenstate of the operator a−1 does not exist,
originates from the creation-like characteristic of a−1 [2]. Also it can be seen that the standard
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coherent state |z〉 in (3) is not the eigenstate of a†−1
, one has instead

a†−1|z〉 = z e− 1
2 |z|2

∞∑
n=0

zn

√
n!(n + 1)

|n〉. (8)

Nevertheless, as we will observe, the ‘nonlinear coherent state method’ provides a rich
enough mathematical structure allowing us to establish our aim. We will illustrate that although
the presented formalism yields a non-normalizable coherent state corresponding to the inverse
bosonic operator

(
a†−1)

, the associated dual family is well defined. In the continuation of
the paper, along generalization of the proposal to the ‘inverse nonlinear (f -deformed) ladder
operators’ involved in the nonlinear coherent states context in quantum optics, the associated
generalized coherent states have been also introduced. Then, as some physical realizations of
the proposed formalism, hydrogen-like spectrum, harmonious states and Gilmore–Perelomov
representation of SU(1, 1) group have been considered. Taking into account their nonlinearity
functions, we shall deduce the explicit form of the corresponding coherent states associated
with the inverse f -deformed operators. At last, we conclude the paper with investigating some
interesting nonclassical properties, for instance sub-Poissonian statistics (anti-bunching) and
the squeezing of the quadratures of the field of the obtained states, numerically.

2. Coherent states of inverse bosonic operators

In this section after presenting a brief review of the nonlinear coherent states, we are going to
establish a link between the ‘inverse bosonic’ and ‘f -deformed (nonlinear) ladder’ operators.

2.1. The link between ‘inverse bosonic’ and ‘f -deformed ladder’ operators

The notion of ‘nonlinear’ or ‘f -deformed’ coherent states which provides a powerful method
to analyze a large number of the quantum optics states [7–9]. Any class of these states,
characterized by a particular intensity-dependent function f (n) is defined as the solution of
the typical eigenvalue equation af |z, f 〉 = z|z, f 〉, with decomposition in the number states
space as

|z, f 〉 = N(|z|2)− 1
2

∞∑
n=0

zn

√
n![f (n)]!

|n〉, (9)

where af = af (n) is the f -deformed annihilation operator, [f (n)]!
.= f (n)f (n − 1)f (n −

2) · · · f (2)f (1) and [f (0)]!
.= 1. The function N(|z|2) in (9) is the normalization constant

which can readily be calculated as
∑∞

n=0 |z|2n/[nf 2(n)]!. Choosing different f (n)’s lead to
distinct generalized coherent states.

The nonorthogonality (as a consequence of overcompleteness) of the states in (9), i.e.
〈z, f |z′, f 〉 �= 0 (and all the new states will be introduced in the present paper) is so clear that
we pay no attention to it. These states are required to satisfy the resolution of the identity∫

D

d2z|z, f 〉W(|z|2)〈z, f | =
∞∑

n=0

|n〉〈n| = Î , (10)

where d2z
.= dx dy,W(|z|2) is a positive weight function may be found after specifying f (n),

and D is the domain of the states in the complex plane defined by the disk

D = {z ∈ C, |z| � lim
n→∞[nf 2(n)]}, (11)

3



J. Phys. A: Math. Theor. 41 (2008) 285305 M K Tavassoly

centered at the origin in the complex plane. Inserting the explicit form of the states (9) in (10)
with |z|2 ≡ x it can be easily checked that the resolution of the identity holds if the following
moment problem is satisfied:

π

∫ R

0
dx σ(x)xn = [nf 2(n)]!, n = 0, 1, 2, . . . , (12)

where σ(x) = W(x)

N(x)
and R is the radius of convergence determined by the relation (11).

Condition (12) presents a severe restriction on the choice of f (n). Altogether, there are
cases for which the completeness of some previously introduced coherent states has been
demonstrated a few years later elsewhere (photon added coherent states were introduced in
1991 [6] while their completeness condition was demonstrated in 2001 [10]). In fact, only
a relatively small number of f (n) functions are known, for which the functions σ(x) can be
extracted.

The action of an f -deformed creation operator defined as a
†
f = f †(n̂)a† on the number

states expresses as follows:

a
†
f |n〉 = f †(n + 1)

√
n + 1|n + 1〉. (13)

Now, going back to our goal in the paper, comparing equations (13) and (5) it can be easily
seen that,

a−1 ≡ a
†
f = f †(n̂)a†, with f (n̂) = 1

n̂
. (14)

Similarly, using the action of the f -deformed annihilation operator af on the number states,
i.e.,

af |n〉 = f (n)
√

n|n − 1〉 (15)

and then comparing with (4) one readily finds

a†−1 ≡ af = af (n̂), (16)

with the same f (n̂) introduced in (14). Note that the following also holds

a†f †(n̂) = f †(n̂ − 1)a†, f (n̂)a = af (n̂ − 1). (17)

Therefore, taking into account all the above results we can write the explicit forms of the
inverse bosonic operators denoted by af and a

†
f , and the related actions as follows [7]:

af ≡ a†−1 = a
1

n̂
, af |n〉 = (1 − δn,0)

1√
n
|n − 1〉, (18)

a
†
f ≡ a−1 = 1

n̂
a†, a

†
f |n〉 = 1√

n + 1
|n + 1〉. (19)

Actually in the latter equations the nonlinearity function is considered as f (n̂) = 1
n̂

.

Equations (18) and (19) confirm that af

(
a
†
f

)
annihilates (creates) one (deformed) quanta

of photon in some optical processes, respectively. For the commutation relation between the
two ladder operators introduced into (18) and (19) one arrives at[

af , a
†
f

] = − 1

n̂(n̂ + 1)
, for n �= 0 (20)

and [
af , a†

f

] = |0〉〈0|, for n = 0. (21)

Interestingly, this method with the factorized Hamiltonian formalism, permits one to derive a
Hamiltonian responsible to the dynamics of the (inverse) system as [9]

ĥ = a
†
f af = 1

n̂
≡ Ĥ−1 for n �= 0, (22)

4
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where one may define ĥ ≡ Ĥ−1 = 0 for n = 0, consistent with the definitions in (4) and
(5). The Hamiltonian in this case is the inverse of the Hamiltonian of the standard (shifted)
harmonic oscillator a†a. Unlike the quantized harmonic oscillator, the spectrum of the new
Hamiltonian system, ĥ, is not equally distanced (arises from the nonlinearity nature of the
inverse system).

2.2. Introducing |z, f 〉(−1) as the coherent states associated with a†−1

Now, one may look for the right eigenstate of the annihilation-like operator af such that

af |z, f 〉(−1) = z|z, f 〉(−1). (23)

The superscript (−1) on any state |·〉 (in the whole of the present paper) refers to the state
corresponds to an ‘inverse’ operator. A straightforward calculation shows that the state
|z, f 〉(−1) satisfies the eigenvalue equation (23) and has the following expansion in the Fock
space:

|z, f 〉(−1) = N(|z|2)−1/2
∞∑

n=0

√
n!zn|n〉, (24)

with the normalization constant

N(|z|2) =
∞∑

n=0

n!|z|2n (25)

which clearly diverges. Therefore, precisely speaking the eigenstate of the annihilation-like
operator af ≡ a†−1

does really exist but unfortunately it is physically meaningless (due to
non-normalizablity of the state). This is an expected result since the relation (11) determines
the radius of convergence equal to 0 when f (n) = 1

n
, i.e. for the case in hand. So, the states

in (24) cannot actually belong to the Hilbert space.

2.3. Introducing |z̃, f 〉(−1) as the dual family of |z, f 〉(−1)

In what follows we will observe that the dual family of the states in (24) is well defined. For
this purpose, it is possible to define two new operators bf and b

†
f as follows:

bf = a
1

f †(n̂)
= an̂, b

†
f = 1

f (n̂)
a† = n̂a†. (26)

Thus, one has
[
af , b

†
f

] = Î = [
bf , a

†
f

]
. These properties allow one to define the generalized

(non-unitary) displacement operator as follows:

Df (z) = exp
[
zb

†
f − z∗af

]
, (27)

the action of which on the vacuum of the field gives the already obtained state in (24). But,
according to the proposal has been recently introduced in [11, 12] another displacement
operator may also be constructed as

D̃f (z) = exp
[
za

†
f − z∗bf

]
, (28)

the action of which on the vacuum of the field gives a new set of nonlinear coherent states as

|̃z, f 〉(−1) = D̃f (z)|0〉 = Ñ(|z|2)−1/2
∞∑

n=0

zn

(n!)3/2
|n〉, (29)

where z ∈ C. The normalization constant Ñ (|z|2) can be obtained as

Ñ(|z|2) =
∞∑

n=0

|z|2n

(n!)3
= 0F2(1, 1, |z|2), (30)

5
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where pFq(a1, . . . , ap; b1, . . . , bp, ; z) = ∑∞
k=0

(a1)k(a2)k ···(ap)k
(b1)k(b2)k ···(bq )k

zk

k! is the generalized
hypergeometric function and (a)m = �(a + m)/�(m) with �(m) the well-known Gamma
function. It can be observed that these states can be defined on the whole space of complex
plane. Nowadays, the states in (9) and (29) are known under the name ‘dual family’ or ‘dual
pair’ coherent states [11, 12]. It can be checked straightforwardly that the nonlinear coherent
states in (29) are also the right eigenstates of the deformed annihilation operator bf = an̂.
Thanks to J R Klauder et al for they established the resolution of the identity of the states in
(29) via the moment problem technique [13].

3. The inverse of the deformed annihilation (and creation) operator and
the associated nonlinear coherent states

Generalizing the proposed approach to the F-deformed rising and lowering operators

A = aF(n̂), A† = F †(n̂)a†, (31)

corresponding to nonlinear oscillator algebra, one can define

A−1 = F−1(n̂)a−1 = 1

n̂F (n̂)
a† ≡ F†(n̂)a† (32)

and

A†−1 = a†−1
F †−1

(n̂) = a
1

n̂F †(n̂)
≡ aF(n̂), (33)

where in the third steps of the derivation of equations (32) and (33) the left equations of
(19) and (18) have been used, respectively. In the continuation of the paper we shall call
F(n) the ‘original’ nonlinearity function. It is worth mentioning two points. First is that the
‘generalized nonlinearity function’ F(n̂) has been defined in terms of the original nonlinearity
function F(n) as

F(n̂) = 1

n̂F †(n̂)
, (34)

and second since the original nonlinearity function F(n̂) is considered to be an operator-valued
function which generally can be complex [14], so is F(n̂). The number states representations
of the operators in (32) and (33) take the forms

A−1 .=
∞∑

n=0

1√
n + 1F(n + 1)

|n + 1〉〈n| (35)

and

A†−1 .=
∞∑

n=0

1√
n + 1F(n + 1)

|n〉〈n + 1|. (36)

It can be seen that

AA−1 = A†−1
A† = Î ,

A−1A = A†A†−1 = Î − |0〉〈0|,
(37)

which mean that A−1 is the right inverse of A, and A†−1
is the left inverse of A†, analogously

to the interpretation of the inverse bosonic operators. With the help of the action of operators
in (35) and (36) on the number states one has

A†−1|n〉 = 1√
nF(n)

(1 − δn,0)|n − 1〉 (38)

6
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and

A−1|n〉 = 1√
n + 1F(n + 1)

|n + 1〉, (39)

where by definition A†−1|0〉 = 0. Therefore, A†−1
and A−1 act on the number states

like annihilation and creation operators, respectively. We will rename reasonably thus the
generalized inverse operators in (32) and (33) as

A† ≡ A−1 = F†(n̂)a†, A ≡ A†−1 = aF(n̂), (40)

respectively. Note that the following commutation relation holds

[A,A†] = (n̂ + 1)|F(n̂ + 1)|2 − n̂|F(n̂)|2 (41)

which can be expressed in terms of the F-function as

[A,A†] = 1

(n̂ + 1)|F(n̂ + 1)|2 − 1

n̂|F(n̂)|2 , for n �= 0, (42)

and

[A,A†] = |0〉〈0|, for n = 0. (43)

The dynamics of the ‘inverse nonlinear oscillator’ may be described by the (inverse)
Hamiltonian

Ĥ = A†A = 1

n̂|F(n̂)|2 ≡ Ĥ−1, for n �= 0, (44)

and Ĥ = 0 for n = 0. Interestingly, the Hamiltonian Ĥ in (22) is the inverse of the Hamiltonian
of the ‘original nonlinear oscillator’ which is a familiar feature in the nonlinear coherent states
context.

Now, the corresponding F-coherent states using the algebraic definition

A|z,F〉(−1) = z|z,F〉(−1) (45)

may be demanded. A straightforward calculation shows that the states |z,F〉(−1) have the
following expansions:

|z,F〉(−1) = N (|z|2)−1/2
∞∑

n=0

zn

√
n![F(n)]!

|n〉. (46)

The states in (46) when transformed in terms of the original nonlinearity function we started
with (F (n)), take the following form:

|z, F 〉(−1) = N (|z|2)−1/2
∞∑

n=0

zn
√

n![F †(n)]!|n〉, (47)

where the definition [F(n)]!
.= 1

n![F †(n)]! has been used and

N (|z|2) =
∞∑

n=0

n!|z|2n([F †(n)]!)2. (48)

With the particular choice of F(n) = 1
n

in (47) (or equivalently F(n) = 1 in (46)) the standard
coherent state in (3), known as self-dual states, will be reobtained.

7
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Similar to the procedure which led us to equation (12), the resolution of the identity
requirement associated with the state in (46) (or (47)) has been satisfied if a function η(x) is
found such that

π

∫ R

0
dx η(x)xn = [nF†2

(n)]!,

=
[

1

nF †2
(n)

]
!, n = 0, 1, 2, . . . , (49)

where R is the radius of convergence determined by the disk

D = {
z ∈ C, |z| � lim

n→∞
[
nF †2

(n)
]−1}

, (50)

centered at the origin in the complex plane.
Related to the operators A† and its conjugate A, two conjugate operators can be defined

as

B = a
1

F†(n)
, B† = 1

F(n)
a†, (51)

such that the following canonical commutation relations hold:

[A,B†] = Î = [B,A†]. (52)

The relations in (51) and (52) enable one to define two generalized (non-unitary) displacement-
type operators

DF (z) = exp(zB† − z∗A) (53)

and

D̃F (z) = exp(zA† − z∗B). (54)

By the action of DF (z) defined in (53) on the fundamental state one readily finds that

DF (z)|0〉 = |z,F〉(−1), (55)

which are exactly the states obtained in equations (46) and (47) in terms of F(n) and F(n),
respectively. To this end, by the action of D̃F (z) in (54) on the vacuum one gets a new set of
states

D̃F (z)|0〉 = |̃z,F〉(−1)

= Ñ (|z|2)−1/2
∞∑

n=0

zn

√
n!

[F†(n)]!|n〉. (56)

The latter states can be expressed in terms of the original function F(n) as follows:

|̃z, F 〉(−1) = Ñ (|z|2)−1/2
∞∑

n=0

zn

√
n![nF †(n)]!

|n〉, (57)

where

Ñ (|z|2) =
∞∑

n=0

|z|2n

(n!)3([F †(n)]!)2
. (58)

The resolution of the identity for the dual state in (56) (or (57)) has been satisfied if a
positive function η̃(x) is found such that

π

∫ R̃

0
dx η̃(x)xn =

[
n

1

F†2
(n)

]
!,

= [
n3F †2

(n)
]
!, n = 0, 1, 2, . . . , (59)

8
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where R̃ is the radius of convergence determined by the disk

D̃ = {
z ∈ C, |z| � lim

n→∞
[
n3F †2

(n)
]}

, (60)

centered at the origin in the complex plane.
Upon substituting F(n) = 1 into (47) and (57) the states in (24) and (29) will be

reobtained, respectively, i.e. the dual family of coherent states associated with the inverse of
bosonic operator.

The states introduced into (46) and (56) (or equivalently in (47) and (57)) are the dual
pair (nonlinear) coherent states corresponding to the generalized inverses of the deformed
operators [11, 14]. Comparing the state in (57) and the usual nonlinear coherent state in (9)
shows that a multiplication factor n! appears in the denominator of the expansion coefficient
of the usual nonlinear coherent state. Note that the existence of the factor [F †(n)]! in the
expansion coefficients of (47) and (48) (or (57) and (58)) provides a good potentiality which
allows one to use suitable nonlinearity functions F(n) for constructing a wide variety of
well-defined generalized coherent states associated with inverse F-deformed operators.

4. Some physical realizations of the formalism and their nonclassical properties

Generally, a state is known as a nonclassical state (with no classical analogue) if the Glauber–
Sudarshan P(α) function [15, 16] cannot be interpreted as a probability density. However, in
practice one cannot directly apply this criterion to investigate the nonclassicality nature of a
state [17]. So, this purpose has been frequently achieved by verifying ‘squeezing, antibunching,
sub-Poissonian statistics and oscillatory number distribution’. A common feature of all the
above-mentioned criteria is that the corresponding P-function of a nonclassical state is not
positive definite. Therefore, each of the above effects (squeezing or sub-Poissonian statistics
which we will consider in the paper) is indeed sufficient for a state to possess nonclassicality
signature.

• Sub-Poissonian statistics. To examine the statistics of the states the Mandel’s Q-parameter
is used, which characterizes the quantum states of light in the cavity. Mandel’s Q-
parameter has been defined as

Q = 〈n2〉 − 〈n〉2

〈n〉 − 1. (61)

This quantity vanishes for ‘standard coherent states’ (Poissonian), is positive for
‘classical’ (bunching effect) and negative for ‘nonclassical’ light (antibunching effect).

• Squeezing phenomena. Based on the following definitions of position and momentum
operators:

x = a + a†
√

2
, p = a − a†

√
2i

, (62)

the corresponding uncertainties will be defined as follows:

(�x)2 = 〈x2〉 − 〈x〉2, (�p)2 = 〈p2〉 − 〈p〉2. (63)

A state is squeezed in position or momentum quadrature if the uncertainty in the
corresponding quadrature falls below the one’s for the vacuum of the field, i.e. (�x)2 < 0.5
or (�p)2 < 0.5, respectively.

9
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To give some physical realizations of the proposal, firstly one must specify the system
with known ‘nonlinearity function’ or ‘discrete spectrum’ (these two quantities are related to
each other through the relation en = nf 2(n), where en denotes the spectrum of physical system
[9, 14]). At this stage in this section we shall concern ourselves with three particular systems:
‘hydrogen-like spectrum’, ‘harmonious state’ and ‘Gilmore–Perelomov representation of
SU(1, 1) group’, for all of which the corresponding usual nonlinear coherent states and
nonlinearity natures have been previously clarified. The squeezing effect and Mandel’s Q-
parameter for the obtained states in the paper may be evaluated numerically. For this purpose
one must calculate the expectation values expressed in (61) and (63) over any state of interest.

4.1. Hydrogen-like spectrum

As an important physical system we will accomplish in the present paper we want to apply
our proposal onto the hydrogen-like spectrum. This quantum system is described by discrete
spectrum,

en = 1 − 1

(n + 1)2
. (64)

The nonlinearity function in this case has been expressed as [9, 14]

FH(n) =
√

n + 2

n + 1
. (65)

The standard nonlinear coherent state corresponding to this nonlinear function obtained with
the help of (9) is restricted to a unit disk in the complex plane centered at the origin. In
this subsection, the nonclassicality nature of the dual pair of coherent states (according to
the structural equations (47) and (57)) associated with hydrogen-like spectrum has been
investigated. For the coherent states according to (47) in this example, the domain is restricted
to |z| < 1, while the domain would be z ∈ C when the states are constructed from (57). The
latter results are consistent with the general feature that occurs in the framework of the dual
pair of coherent states, where if the domain of one set of a dual pair of coherent states is the
whole of the complex plane, that of the other set would be the unit disk and vice versa [9].
Anyway, for instance, to verify the resolution of the identity for the corresponding dual states
according to (57) we use the definition of Meijer’s G-function together with the inverse Mellin
theorem [18],∫ ∞

0
dx xs−1Gm,n

p,q

(
αx

∣∣∣a1, · · · , an, an+1, · · · , ap

b1, · · · , bm, bm+1, · · · , bq

)
= 1

αs

× �m
j=1�(bj + s)�n

j=1�(1 − aj − s)

�
p

j=n+1�(aj + s)�
q

j=m+1�(1 − bj − s)
. (66)

So, for instance, the function η̃(x) satisfying equation (59) with nonlinearity function
introduced into (65) may be given in terms of the Meijer’s G-function by the expression

η̃(x) = G
4,0
2,0

(
x

∣∣∣∣0, 0, 0, 2 .

0, 0 .

)
. (67)

Thus, the associated weight function which satisfies the resolution of the identity for these
set of states can be calculated as W̃(x) = η̃(x)(1 + x) 0F1(3, x), where 0F1 is the regularized
confluent hypergeometric function and η̃(x) is determined in (67). Now, the numerical results
for the dual pair of coherent states according to (47) and (57) with the nonlinearity function
in (65) will be displayed in figures 1–4. Although the dual pair of coherent states are defined

10
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Figure 1. The uncertainties in x (the solid curve) and p (the dashed curve) as a function of z ∈ R

for the hydrogen-like spectrum according to equation (47).

Figure 2. The same as figure 1 except that equation (57) has been considered.

on different domains, for the sake of comparison our numerical calculations for both of them
presented just for |z| < 1. In figure 1, the uncertainties in x and p have been plotted in the
respected domain as a function of z ∈ R utilizing (47). The squeezing in p-quadrature has
been shown for real z < 1. Figure 2 is the same as figure 1 except that equation (57) has been
considered. The squeezing in x-quadrature has occurred for real z. Our further computations
when z � 1 for the example in hand upon using (57), as defined on the whole complex plane,
indicated that the variances in x (solid line) and p (dashed line) tend respectively at about
∼=0.25 and ∼=1. So, the squeezing in x is visible for any real value of z. The three-dimensional
graph of Mandel’s Q-parameter as a function of z ∈ C has been shown in figure 3 for the states
constructed according to (47). As it can be seen the sub-Poissonian statistics is restricted to
a finite range of values of z near z < 1. Figure 4 is the same as figure 3 when (57) is used.
In this case, the sub-Poissonian exhibition has occurred for all values of z ∈ C. So, in view
of this result, the latter are fully nonclassical states, in the sense that they have a nonclassical
nature within the whole permitted range of z values.

11
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Figure 3. The graph of Mandel’s Q-parameter as a function of z ∈ C, for the hydrogen-like
spectrum according to equation (47).

Figure 4. The same as figure 3 except that equation (57) has been considered.

4.2. Harmonious states

Harmonious states characterized by the nonlinearity function

FHS(n) = 1√
n

(68)

has considerable attention in quantum optics. It can be observed that the lowering operator
constructed from the nonlinearity function in (68) is equivalently the nonunitary Susskind–
Glogower operator exp(i	̂) = a(a†a)−1/2 [19]. It has been shown that the probability
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operator measures generated by the latter operator yields the maximum likelihood quantum
phase estimation for an arbitrary input state [20]. Inserting FHS(n) from (68) into (47) one will
reobtain the harmonious states introduced and discussed in detail by Sudarshan [21], restricted
again to a unit disk in the complex plane. On the other hand, substituting this nonlinearity
function into (57) yields the following generalized coherent states:

|̃z, F 〉(−1) = Ñ (|z|2)−1/2
∞∑

n=0

zn

n!
|n〉, (69)

with the normalization constant

Ñ (|z|2) =
∞∑

n=0

|z|2n

(n!)2
= I0(2

√
|z|2), (70)

where in the last expression I0(x) is the modified Bessel function of the first kind. The
domain of this set of coherent states is the whole complex plane. The resolution of the identity
in this case is satisfied with the choice of a density function which may be determined as
η̃(x) = 2K0(2

√
x). So the associated weight function will be W̃(x) = 2K0(2

√
x)I0(2

√
x),

where I0 and K0 are the modified Bessel functions of the first and third kind, respectively [13].
We refrain from graphical representations, since the numerical results with the nonlinearity

function (68) are closely to that of the hydrogen-like states which have been illustrated in
subsection 4.1. This fact may be expected, because the two nonlinearity functions in (65) and
(68) are not far from each other especially for large n.

4.3. Gilmore–Perelomov representation of the SU(1, 1) group

As a final example we are interested in the Gilmore–Perelomov (GP) coherent state of SU(1, 1)

group whose number state representation read as [22]

|z, κ〉su(1,1)
GP = N(|z|2)−1/2

∞∑
n=0

√
�(n + 2κ)

n!
zn|n〉, (71)

where N(|z|2) is the normalization constant which can be written in closed form as follows:

N(|z|2) = (1 − |z|2)−2κ�(2κ). (72)

Note that the expansion in (71) the label κ takes the discrete values 1/2, 1, 3/2, 2, 5/2, . . ..
The nonlinearity function in this case is determined as [9]

F(n, κ) = 1√
n + 2κ − 1

. (73)

According to equation (47) the corresponding coherent state associated with the inverse F-
deformed annihilation-like operator using F(n, κ) in (73) takes the following decomposition
in number states:

|z, F 〉(−1)
GP = N (|z|2)−1/2

∞∑
n=0

√
n!

�(n + 2κ − 1)
zn|n〉, (74)

with the normalization constant

N (|z|2) = 2F1({1, 1}; {2κ}; |z|2)
�(2κ)

, (75)

where pFq(
−→a ;−→

b ; x)=pFq({a1, . . . , ap}; {b1, . . . , bq}; x) is the generalized hypergeometric
function. These states can be defined in the unit disk. Similarly, the explicit expansion of the
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Figure 5. The uncertainties in x and p versus z ∈ R for the GP representations of SU(1, 1) group
according to equation (47) for different values of κ; κ = 0.5 (solid lines), κ = 1 (dashed lines)
and κ = 1.5 (dotted lines). Squeezing in p is observed in all cases.

Figure 6. The same as figure 5 except that equation (57) has been considered. Squeezing in x is
observed in all cases.

dual family of (74) can be obtained easily by inserting F(n, κ) from (73) into the structural
equation (57) which has the whole complex plane domain. To investigate the resolution of
the identity associated with the states which have been constructed according to the structural
equation (57) one gets

η̃(x) = G
3,0
1,0

(
x

∣∣∣∣ . 2κ − 1
0, 0, 0 .

)
, (76)

where again we have used (66). Therefore, the corresponding weight function which satisfies
the resolution of the identity in this case can be evaluated as W̃(x) = �(2κ)̃η(x)1F1(2κ; 1; x),
where 1F1 is the Kummer confluent hypergeometric function and η̃(x) has been defined in
equation (76). Now, we discuss the numerical results of the SU(1, 1) group in figures 5–
10. In figure 5, the uncertainties in x and p have been shown with respect to z ∈ R for
different values of κ according to the construction of states using (47). The squeezing in
p-quadrature is visible for all values of z < 1, irrespective of κ values. It is seen that the
maximal squeezing occurred for κ = 1

2 . Figure 6 is the same as figure 5 where (57) has been
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Figure 7. The Mandel’s Q-parameter as a function of z ∈ C for GP representation of SU(1, 1)

group, according to equation (47) (κ is set equal to 1/2).

Figure 8. The two-dimensional Mandel’s Q-parameter of figure 7 as a function of y (when x = 0.8)
for GP representation of the SU(1, 1) group, according to equation (47) (κ is set equal to 1/2).

considered. In this case squeezing has been shown in x-quadrature for all values of κ , when
z ∈ R. The three-dimensional graphic representation of Mandel’s Q-parameter for the state
corresponding to (47) is plotted in figure 7. The sub-Poissonian statistics in a finite range
of values of z has been shown (when both the real and imaginary parts of z are near 1, the
upper bound of z). Figure 8 is a typical two-dimensional plot of figure 7 when the real part
of z is fixed at a particular value, i.e. x = 0.8. This figure may be useful to illustrate figure 7
in detail. Figure 9 is the same as figure 7 when (57) is used. The sub-Poissonian statistics
have occurred for all values of z ∈ C. According to our calculations for different values of
κ , the negativity of the Mandel’s Q-parameter decreases (for the states of the type (57)) with
increasing κ (figure 10 shows this fact when compared with figure 9). But the sub-Poissonian
nature of the latter states in the complex plane preserves for all allowed values of κ . Our
further calculations show that by increasing the real and imaginary parts of z the Mandel’s
Q-parameter fixes at a certain negative value between 0 and −1. To this end, as stated in
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Figure 9. The same as figure 7 except that equation (57) has been considered with κ = 1.

Figure 10. The same as figure 7 except that equation (57) has been considered with κ = 3.

the case of the Hydrogen-like spectrum, the latter states of SU(1, 1) constructed utilizing
equation (57) are also fully nonclassical states.

5. Summary and conclusion

The large number of applications of coherent states in various areas of physics motivates
to enlarge them, so looking for novel definitions and new classes of states is of much
interest. In this paper, based on the ‘nonlinear coherent states method’, a formalism for
the construction of a coherent state associated with the ‘inverse (bosonic) annihilation-
like operator’ has been introduced. Although the latter was ill-defined, their dual family
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has been obtained in a proper fashion. Generalizing the concept, the ‘inverse nonlinear
(F-deformed) ladder operators’ corresponding to the deformed rising and lowering operators
involved in the nonlinear coherent states of quantum optics, ‘the associated nonlinear
(F-deformed) coherent states’ have been introduced. The presented formalism provides a
framework that by virtue of the generalized coherent states having been previously introduced
(with known nonlinearity functions or corresponding to any exactly solvable potential with
discrete spectrum) [23, 24], it will be possible to construct new classes of generalized coherent
states associated with generalized inverse (F-deformed annihilation-like) operators. So, a large
set of generalized coherent states in addition to their dual families can be constructed in the
field of quantum optics. We hope that the introduced states may find their useful applications
in different physical situations, both theoretically and experimentally.
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